Curation Guidelines

- Sequence-specific DNA binding RNA polymerase II transcription factors
- Transcription factor binding RNA polymerase II transcription factors

Content	Page
Curation work flow	1
Create TF annotations	1
Sequence-specific DNA binding (MF)	2
Transcription regulation (BP)	3
Sequence-specific DNA binding IF activity (MF)	4
Evidence codes for DNA binding TF activity	5
TF binding TF activity	6
When the functional unit of a TF is a complex	7
Create TG annotations	8
GO terms with definitions	
Transcription regulation(BP)	9
Sequence-specific DNA binding (MF)	9
Sequence-specific DNA binding TF activity (MF)	10
TF binding activity and process (MF, BP)	11
GO Evidence Codes with definitions	12

Figure 1: Primary GO terms/subgraphs used for DbTF annotation. In this graph, sequence-specific DNA binding MF terms (yellow), sequence-specific DNA binding TF activity MF terms (green), TF binding MF terms (orange), transcription regulation BP (blue) and TF binding TF activity MF terms (pink) are shown along with the relationships between terms in the graph structure.

Curation workflow

Identify TF species

The current curation guidelines are focused on the mammalian species: human, mouse, rat

The species that the TF (i.e. its coding sequence) originates from must be unequivocally determined. If the publication used for curation does not state this explicitly, TF references must be traced for species determination or authors contacted to obtain relevant information.

If it is not possible to assert the species of the TF studied, then the paper cannot be used for curation.

Create annotations for DNA binding, Transcription Regulation, TF binding

Identify an experiment that qualifies for annotation. Use Assay look-up Tables (pages 2 - 6) to assess eligibility and GO evidence code.

(optional) Assign experimental assay term and PSI-MI code

Use Assay look-up Tables (pages 2 - 6) to assign experimental assay, its variant and PSI-MI code

Create annotations for DbTF activity or TF binding activity

Create these terms by combining the DNA (or TF) binding and transcription regulation terms generated in the steps above.

Use '*Decision Tables*' for DNA binding TFs (Table 3, page 4) or TF binding TFs (Table 6, page 6)

Figure 2: Sequence - specific DNA binding TF (DbTF) curation workflow

Sequence-specific DNA binding annotations

Use Table 1 to identify valid experimental evidence for one of the GO terms for DNA binding shown in Figure 3

Whenever possible, choose GO:0000977 - RNA polymerase II regulatory region sequence-specific DNA binding or one of its children. Use GO:00043565 only when it is not possible to identify information stating that the specific DNA sequence bound by the protein is found in a gene regulatory region, and GO:0000976 only when it is not possible to identify information stating that the regulatory region containing the DNA-sequence specifically bound by the protein is part of a gene regulated by RNA polymerase II.

DNA binding detection methods differ in how the TF is presented (as detailed for EMSA variants in Table 1). Presentation of TF as a nuclear extract from native cells or tissue is not sufficient for annotation of DNA binding (*"No evid."*). In these instances we search for other experimental evidence that can identify the specific TF, e.g. TF-specific antibody in EMSA supershift.

X-ray crystallography used as evidence for DNA binding requires that the TF is co-crystallized with a DNA sequence that represents either a canonical TFBS or an authentic gene regulatory region.

Figure 3: GO terms for MF specific DNA binding

		Evidence	PSI-MI
Experimental assays	Variants	code	code
Electrophoretic mobility shift assay (EMSA)	nuclear extract from native tissue or cells	No evid.	MI:0413
	nuclear extracts from cells or tissue with ectopic expression of a TF	IDA	MI:0413
	purified TF (in vitro translated or purified from cell extract)	IDA	MI:0413
	nuclear extract from cells with ectopic expression of a mutated TF	IMP	MI:0413
	purified mutated TF (<i>in vitro</i> translated or purified from cell extract	IMP	MI:0413
Electrophoretic mobility supershift assay (EMSA supershift)	nuclear extract from native tissue or cells	IDA	MI:0412
	nuclear extracts from cells or tissue with ectopic expression of a TF	IDA	MI:0412
	purified TF (in vitro translated or purified from cell extract)	IDA	MI:0412
	nuclear extract from cells with ectopic expression of a mutated TF	IMP	MI:0412
	purified mutated TF (<i>in vitro</i> translated or purified from cell extract)	IMP	MI:0412
Footprinting		IDA	MI:0417
DNase I footprinting (DNA footprint)		IDA	MI:0606
Methylation interference assay (MIC)		IDA	MI:1189
Ultraviolet (UV) footprinting (UV-footprint)		IDA	MI:1191
Dimethylsulphate footprinting (DMS-footprint)		IDA	MI:0603
Hydroxy radical footprinting (Hydroxy- footprint)		IDA	MI:1190
Potassium permanganate footprinting (KMnO4-footprint)		IDA	MI:0604
Affinity chromatography technology		IDA	MI:0004
Pull down		IDA	MI:0096
Southwestern blot assay (SW-blot)		IDA	
In vitro evolution of nucleic acids (SELEX)		IDA	MI:0657
X-ray crystallography		IDA	MI:0114

Table 1: Assays documenting specific DNA binding.

Transcription regulation annotations

Use Table 2 to identify valid experimental evidence for one of the GO terms for transcription regulation shown in Figure 4.

Whenever possible, indicate whether the regulation is positive or negative, by using the adequate GO terms

Figure 4: GO terms for BP transcription regulation

Transcription regulation annotations can also be supported by **whole organism experiments**, e.g. knock out mutations or RNAi knock down strategies.

Such experiments do not by themselves prove a role in regulation of transcription and must therefore be made with caution: they depend on a strict awareness of additional information such as the concomitant documentation of specific binding by the protein in question, to regulatory regions of an RNAP II regulated gene.

	Transcription regulation assays								
		reporter g	ene assay	TG expression assay					
	canonical TFBS	authentic TG promoter	authentic TG promoter with TFBS point	authentic TG promoter with deletion	primer specific PCR (e.g. RT-PCR, qRT-PCR)	northern blot	ribo- nuclease protection assay		
TF identification			mutation	mutations	MI:0088	MI:0929	MI:0920		
wt TF overexpression	IDA	IDA	IDA	IDA	IDA	IDA	IDA		
mut TF overexpression	IMP	IMP	IMP	IMP	IMP	IMP	IMP		
TF knock down (RNAi/antisense RNA)	IMP	IMP	IMP	IMP	IMP	IMP	IMP		

Table 2: Reporter gene-based assays variants documenting transcription regulation.

Sequence-specific DNA binding TF activity annotations

Based on the protein's existing GO annotations for specific DNA-binding (MF) and for transcription regulation (BP), create a sequence-specific DNAbinding TF activity (MF) annotation.

Use Decision Table 3 to identify the correct GO term (shown in green in Figure 5).

Assign evidence codes according to Table 4 – see next page.

Figure 5: GO terms for MF sequence-specific DNA binding TF activity

Table 3: Inference of DbTF activity terms from sequence-specific DNA binding and transcription regulation terms

	Transcription regulation terms (BP)								
Sequence-specific DNA binding terms (MF)	GO:0006357 regulation of transcription from RNA polymerase II promoter	GO:0045944 positive regulation of transcription from RNA polymerase II promoter	GO:0000122 negative regulation of transcription from RNA polymerase II promoter						
GO:0043565 sequence-specific DNA binding		GO:0001228	GO:0001227						
GO:0000976 transcription regulatory region sequence- specific DNA binding	GO: 0000981 sequence-specific DNA binding RNA polymerase II	RNA polymerase II transcription regulatory region sequence-specific DNA binding transcription	RNA polymerase II transcription regulatory region sequence-specific DNA binding transcription						
GO:0000977 RNA polymerase II regulatory region sequence-specific DNA binding	transcription factor activity	factor activity involved in positive regulation of transcription	factor activity involved in negative regulation of transcription						
GO:0000978 RNA polymerase II core promoter proximal region sequence- specific DNA binding	GO:0000978 VA polymerase II core promoter proximal region sequence- precific DNA binding diffic DNA binding region sequence- promoter proximal region sequence-specific DNA binding transcription factor activity		GO:0001078 RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription						
GO:0000980 RNA polymerase II distal enhancer sequence-specific DNA binding	GO:0003705 sequence-specific distal enhancer binding RNA polymerase II transcription factor activity	GO:0001205 RNA polymerase II distal enhancer sequence- specific DNA binding transcription factor activity involved in positive regulation of transcription	GO:0001206 RNA polymerase II distal enhancer sequence- specific DNA binding transcription factor activity involved in negative regulation of transcription						

Evidence codes for sequence-specific DNA binding TF activity

Sequence-specific DNA binding (MF) and transcription regulation (BP) annotations from

- same publication and with same evidence code (either both IDA or both IMP), sequence-specific DNA binding TF activity (MF) term receives this GO evidence code
- same publication but with different evidence codes (IDA and IMP),
 sequence-specific DNA binding TF activity (MF) term is repeated twice, once with each of the two GO evidence codes
- *two different publications*: use GO evidence code 'IC: Inferred by curator'.

To generate GO evidence code 'IC':

The two GO identifiers (specific DNA binding and transcription regulation) assigned to the same TF from two different publications are inserted into the 'with/from' field.

Reference GO_REF:0000036 is generated (see also: http://www.geneontology.org/GO.evidence.shtml#ic)

Table 4: Evidence code table

DNA binding	Transcription regulation	TF activity		
IDA	IDA	IDA/IC		
IMP	IMP	IMP/IC		
IDA	IMP	IDA, IMP/IC		
IMP	IDA	IMP, IDA/IC		

TF binding TF activity annotations

Use Table 5 to identify valid experimental evidence for one of the GO terms for TF-binding shown in orange in Figure 6.

The IPI evidence code indicates that the interaction is a direct 1:1 interaction. The IDA evidence code should be used when the protein being annotated is shown to bind to a TF that is a complex.

The TF binding partner(s) must be recorded in '*with/from*' field (<u>http://www.geneontology.org</u> /<u>GO.evidence.shtml</u>).

Transcription regulation BP annotations (shown in blue in Figure 6) are made as described above for *Transcription Regulation annotations*, page 3.

Use Decision Table 6 to identify the correct GO term for TFbinding TF activity shown in pink in Figure 6.

For assignment of **evidence code for TF binding activity** see Table 7: when TF binding (MF) and transcription regulation (BP) annotations are from

- same publication but with different evidence codes (IDA, IPI or IMP), - TF binding TF activity (MF) term is repeated twice or three times, once with each of the GO evidence codes
- *two different publications*: use GO evidence code 'IC: Inferred by curator' (as described on page 5).

Figure 6: GO terms for MF TF binding TF activity

Table 5: Assays documenting TF binding.

Assays	GO evidence Code	PSI-MI code		
2-hybrid interactions	IPI	MI:0018		
Co-purification	IPI, IDA	MI:0004		
Co-immunoprecipitation	IPI, IDA	MI:0019		

Table 6: Inference of TF binding TF activity terms from TF binding andtranscription regulation terms

		Trar	nscription regulation terms	: (BP)		
	TF hinding terms	GO:0006357	GO:0045944	GO:0000122		
(2.45)	(845)	regulation of transcription	positive regulation of	negative regulation of		
	(IVIF)	from RNA polymerase II	transcription from RNA	transcription from RNA		
		promoter	polymerase II promoter	polymerase II promoter		
			GO:0001190	GO:0001191		
	CO. 0008134	GO: 0001076	RNA polymerase II	RNA polymerase II transcription factor binding		
	Transcription factor	RNA polymerase II	transcription factor binding			
		transcription factor binding	transcription factor activity	transcription factor activity		
	binding	transcription factor activity	involved in positive regulation	involved in negative		
			of transcription	regulation of transcription		
			GO:0001190	GO:0001191		
	GO: 0001085	GO: 0001076	RNA polymerase II	RNA polymerase II		
	RNA polymerase II	RNA polymerase II	transcription factor binding	transcription factor binding		
	transcription factor	transcription factor binding	transcription factor activity	transcription factor activity		
	binding	transcription factor activity	involved in positive regulation	involved in negative		
			of transcription	regulation of transcription		

Table 7: TF binding activity evidence code table

TF binding	Transcription regulation	TF activity		
IDA	IDA	IDA/IC		
IMP	IMP	IMP/IC		
IDA	IMP	IDA, IMP/IC		
IMP	IDA	IMP, IDA/IC		
IPI	IDA	IPI, IDA/ IC		

When the functional unit of a TF is a complex

When the complex is a **homodimer, or higher order multimer of the same protein**, there are no special annotation issues as all of the activities demonstrated are properties of the same gene product.

Additional considerations for heterodimers and other multisubunit complexes

The **"contributes to" qualifier** must always be used to indicate the annotation of molecular functions that occur in the context of complexes. The "contributes to" qualifier can be used in conjunction with any MF term, including the "transcription factor activity" terms, to indicate that it contributes to that function within the context of a complex, even though it does not possess that activity independently

In the case of a heterodimer where one of the two proteins does not bind DNA on its own but is still found to contribute to the sequence specific binding of the other subunit within a heterodimer: the subunit that does not bind DNA alone can still be annotated to "sequence-specific DNA binding", or possibly a more specific term, using the qualifier "contributes to" to indicate that it contributes to the DNA binding of the heterodimer. In a multisubunit TF where the DNA binding activity is known to be confined to one or more specific subunits: other subunits should not be annotated to a "DNA binding" term.

For any subunit within a TF complex, it is appropriate to annotate to all appropriate GO terms for which that function has been experimentally shown, either individually or as part of the complex indicated with the "contributes to" qualifier. Thus, in some cases, a given protein may be annotated both a 'sequence specific DNA binding RNAP II transcription factor activity' term as well as a 'TF binding RNAP II transcription factor activity' term.

Target gene (TG) annotations

Use the 'annotation extension' column shown in Figure 7 to capture information for one or several TGs shown to be regulated by the TF whose function is annotated by using "has_regulation_target", source of TG identifier and TG identifier, as explained below.

!DB	DB Object	DB Object Qualifier	r GO ID		Evidence	With/ Aspect	DB Object Name	DB Object	DB Object	Taxon	Date	Assigned	Annotation Extension extension
	ID	Symbol		DB:Reference	Code	From		Synonym	Туре			Ву	
UniProtKB	O43248	HOXC11	GO:0000978	PMID:9582375	IDA	F	Homeobox protein Hox-C	11	protein	taxon:9606	20130412	NTNU_SB	
													has_regulation_target(Entrez:3938)
UniProtKB	O43248	HOXC11	GO:0045944	PMID:9582375	IDA	Р	Homeobox protein Hox-C	11	protein	taxon:9606	20130412	NTNU_SB	
UniProtKB	O43248	HOXC11	GO:0001077	PMID:9582375	IDA	F	Homeobox protein Hox-C	11	protein	taxon:9606	20130412	NTNU_SB	
UniProtKB	P47902	CDX1	GO:0000980	PMID:15774940	IDA	F	Homeobox protein CDX-1		protein	taxon:9606	20130412	NTNU_SB	
UniProtKB	P47902	CDX1	GO:0045944	PMID:15774940	IDA	Р	Homeobox protein CDX-1		protein	taxon:9606	20130412	NTNU SB	has_regulation_target(Entrez:248)
UniProtKB	P47902	CDX1	GO:0001205	PMID:15774940	IDA	F	Homeobox protein CDX-1		protein	taxon:9606	20130412	NTNU_SB	

Figure 7: DbTF sample annotations with TG information (rows 2 and 5) shown as "column 16" of the spread sheet GAF2.0 format; http://www.geneontology.org/GO.format.gaf-2_0.shtml.

The relationship "has_regulation_target" is used to capture TG information in the spread sheet row used to record the transcription regulation term. This row can either hold terms that have is_a relationships to the term "biological regulation" (i.e. are BP-terms), or MF terms representing regulators that are part of regulatory processes (i.e. have part_of relationships to a BP regulation term).

In the examples shown in Figure 7, the transcriptiojn regulation term is GO:0045944 *positive regulation of transcription from RNA polymerase II promoter*.

When we use the "has_regulation_target" relationship, we are saying that the GO term used for the annotation, e.g. "*regulation of transcription from RNA polymerase II*" or "*sequence-specific DNA binding RNA polymerase II transcription factor activity*" has a target, and we use a gene ID (URI) to specify what that target is.

To indicate multiple TGs in the same annotation: separate each 'relationship(identifier)' pair with a pipe, "|".

Example: to capture the two TGs, the annotation extension column should contain:

has_regulation_target(source:GeneURI1) | has_regulation_target (source:GeneURI2)

where **source** can be ENSEMBL, Entrez, or a model organism database, e.g. MGI, RGD, etc. and **Gene URI1** and **GeneURI2** denote identifiers from any of the above sources.

GO terms

Transcription regulation terms

GO:0006357 regulation of transcription from RNA polymerase II promoter Definition: "Any process that modulates the frequency, rate or extent of transcription from an RNA polymerase II promoter."

GO:0045944 positive regulation of transcription from RNA polymerase II promoter Definition: "Any process that activates or increases the frequency, rate or extent of transcription from an RNA polymerase II promoter."

GO:0000122 negative regulation of transcription from RNA polymerase II promoter Definition: "Any process that stops, prevents, or reduces the frequency, rate or extent of transcription from an RNA polymerase II promoter."

Sequence-specific DNA binding terms

GO:0043565 - sequence-specific DNA binding

Definition: "Interacting selectively and non-covalently with DNA of a specific nucleotide composition, e.g. GC-rich DNA binding, or with a specific sequence motif or type of DNA e.g. promotor binding or rDNA binding."

GO:0000976 - transcription regulatory region sequence-specific DNA binding

Definition: Interacting selectively and non-covalently with a specific sequence of DNA that is part of a regulatory region that controls transcription of that section of the DNA. The transcribed region might be described as a gene, cistron, or operon.

GO:0000977 - RNA polymerase II regulatory region sequence-specific DNA binding Definition: "Interacting selectively and non-covalently with a specific sequence of DNA that is part of a regulatory region that controls the transcription of a gene or cistron by RNA polymerase II."

GO:0000978 - RNA polymerase II core promoter proximal region sequence-specific DNA binding

Definition: "Interacting selectively and non-covalently with a sequence of DNA that is in cis with and relatively close to a core promoter for RNA polymerase II." comment: Note that the phrase "upstream activating sequence", or UAS is often used in S. cerevisiae literature to refer to regulatory sequences that occur in the region upstream and proximal to the core promoter. In contrast, in bacteria such as E. coli, the phrase "upstream activating sequence", or UAS is a synonym for "enhancer".

GO:0000980 - RNA polymerase II distal enhancer sequence-specific DNA binding

Definition: "Interacting selectively and non-covalently with a RNA polymerase II (Pol II) distal enhancer. In mammalian cells, enhancers are distal sequences that increase the utilization of some promoters, and can function in either orientation and in any location (upstream or downstream) relative to the core promoter."

Sequence-specific DNA binding transcription factor activity terms

GO: 0000981 - sequence-specific DNA binding RNA polymerase II transcription factor activity

Definition: Interacting selectively and non-covalently with a specific DNA sequence in order to modulate transcription by RNA polymerase II. The transcription factor may or may not also interact selectively with a protein or macromolecular complex.

GO:0001227 - RNA polymerase II transcription regulatory region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription Definition: Interacting selectively and non-covalently with a sequence of DNA that is in the regulatory region for RNA polymerase II (RNAP II) in order to stop, prevent, or reduce the frequency, rate or extent of transcription from an RNA polymerase II promoter.

GO:0001228 - RNA polymerase II transcription regulatory region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription Definition: Interacting selectively and non-covalently with a sequence of DNA that is in the transcription regulatory region for RNA polymerase II (RNAP II) in order to activate or increase the frequency, rate or extent of transcription from the RNAP II promoter.

GO:0000982 - RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity

Definition: Interacting selectively and non-covalently with a sequence of DNA that is in cis with and relatively close to a core promoter for RNA polymerase II (RNAP II) in order to modulate transcription by RNAP II.

GO:0001077- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription Definition : Interacting selectively and non-covalently with a sequence of DNA that is in cis with and relatively close to a core promoter for RNA polymerase II (RNAP II) in order to activate or increase the frequency, rate or extent of transcription from the RNAP II promoter.

GO:0001078- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription Definition: Interacting selectively and non-covalently with a sequence of DNA that is in cis with and relatively close to a core promoter for RNA polymerase II (RNAP II) in order to stop, prevent, or reduce the frequency, rate or extent of transcription from the RNAP II promoter.

GO:0003705 - sequence-specific distal enhancer binding RNA polymerase II transcription factor activity

Definition: Interacting selectively and non-covalently with a sequence of DNA that is in a distal enhancer region for RNA polymerase II (RNAP II) in order to modulate transcription by RNAP II.

GO:0001205 - RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription.

Definition: "Interacting selectively and non-covalently with a sequence of DNA that is in a distal enhancer region for RNA polymerase II (RNAP II) in order to activate or increase the frequency, rate or extent of transcription from the RNAP II promoter."

GO:0001206 - RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription.

Definition: "Interacting selectively and non-covalently with a sequence of DNA that is in a distal enhancer region for RNA polymerase II (RNAP II) in order to stop, prevent, or reduce the frequency, rate or extent of transcription from an RNA polymerase II promoter."

GO:0008134 - Transcription factor binding (MF)

Definition: Interacting selectively and non-covalently with a transcription factor, any protein required to initiate or regulate transcription.

GO:0001085 - RNA polymerase II transcription factor binding (MF)

Definition: Interacting selectively and non-covalently with an RNA polymerase II transcription factor, any protein required to initiate or regulate transcription by RNA polymerase II.

Transcription factor binding transcription factor activity terms

GO:0001076 - RNA polymerase II transcription factor binding transcription factor activity (BP)

Definition: Interacting selectively and non-covalently with an RNA polymerase II transcription factor, which may be a single protein or a complex, in order to modulate transcription. A protein binding transcription factor may or may not also interact with the template nucleic acid (either DNA or RNA) as well.

GO:0001190 - RNA polymerase II transcription factor binding transcription factor activity involved in positive regulation of transcription (BP)

Definition: Interacting selectively and non-covalently with an RNA polymerase II transcription factor, which may be a single protein or a complex, in order to increase the frequency, rate or extent of transcription from an RNA polymerase II promoter. A protein binding transcription factor may or may not also interact with the template nucleic acid (either DNA or RNA) as well.

GO:0001191 - RNA polymerase II transcription factor binding transcription factor activity involved in negative regulation of transcription (BP)

Definition: Interacting selectively and non-covalently with an RNA polymerase II transcription factor, which may be a single protein or a complex, in order to stop, prevent, or reduce the frequency, rate or extent of transcription from an RNA polymerase II promoter. A protein binding transcription factor may or may not also interact with the template nucleic acid (either DNA or RNA) as well.

GOC evidence codes

IDA – Inferred from direct assay

Description (GOC): The IDA evidence code is used to indicate that a direct assay was carried out to determine the function, process, or component indicated by the GO term.

IMP – Inferred from mutant phenotype

Description (GOC): The IMP evidence code covers those cases when the function, process or cellular localization of a gene product is inferred based on differences in the function, process, or cellular localization between two different alleles of the corresponding gene. The IMP code is used for cases where one allele may be designated 'wild-type' and another as 'mutant'. It is also used in cases where allelic variation occurs naturally and no specific allele is designated as wild-type or mutant.

IC - Inferred by Curator

Description (GOC): The IC evidence code is to be used for those cases where an annotation is not supported by any direct evidence, but can be reasonably inferred by a curator from other GO annotations, for which evidence is available.

IPI - Inferred from Physical Interaction

Description (GOC): Covers physical interactions between the gene product of interest and another molecule (such as a protein, ion or complex). IPI can be thought of as a type of IDA, where the actual binding partner or target can be specified, using "with" in the with/from field.